Attribute-Guided Feature Learning Network for Vehicle Reidentification
نویسندگان
چکیده
منابع مشابه
Cascade Attribute Learning Network
We propose the cascade attribute learning network (CALNet), which can learn attributes in a control task separately and assemble them together. Our contribution is twofold: first we propose attribute learning in reinforcement learning (RL). Attributes used to be modeled using constraint functions or terms in the objective function, making it hard to transfer. Attribute learning, on the other ha...
متن کاملField Investigation of Advanced Vehicle Reidentification
The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California. This report does not constitute a standard, specification, or regulation. The contents of this report reflect the views of the authors who are responsible f...
متن کاملAttribute Learning for Network Intrusion Detection
Network intrusion detection is one of the most visible uses for Big Data analytics. One of the main problems in this application is the constant rise of new attacks. This scenario, characterized by the fact that not enough labeled examples are available for the new classes of attacks is hardly addressed by traditional machine learning approaches. New findings on the capabilities of Zero-Shot le...
متن کاملAttribute-Guided Network for Cross-Modal Zero-Shot Hashing
Zero-Shot Hashing aims at learning a hashing model that is trained only by instances from seen categories but can generate well to those of unseen categories. Typically, it is achieved by utilizing a semantic embedding space to transfer knowledge from seen domain to unseen domain. Existing efforts mainly focus on single-modal retrieval task, especially Image-Based Image Retrieval (IBIR). Howeve...
متن کاملUsing Fuzzy Dependency-Guided Attribute Grouping in Feature Selection
Feature selection has become a vital step in many machine learning techniques due to their inability to handle high dimensional descriptions of input features. This paper demonstrates the applicability of fuzzy-rough attribute reduction and fuzzy dependencies to the problem of learning classifiers, resulting in simpler rules with little loss in classification accuracy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE MultiMedia
سال: 2020
ISSN: 1070-986X,1941-0166
DOI: 10.1109/mmul.2020.2999464